Y13FM Autumn Term	Pure: - Complex numbers (introduction, modulus and argument form, argand diagram and loci in the complex plane) - Matrices (introduction, matrices and transformations, invariance, determinants and inverses including of a 3×3 matrix) - Vectors and 3-D space (scalar and vector products, the vector equation of a line) - Proof by induction - Roots of polynomials (including complex roots) Statistics: - Probability including permutations and combinations - Discrete random variables - Discrete distributions (Binomial, Geometric, Uniform, Poisson) - Chi-squared tests (Contingency tables including Yates' correction and Goodness-of-fit tests) - Correlation (Pearson's product moment correlation coefficient and Spearman's rank correlation coefficient) - Linear regression - Continuous random variables - Continuous distributions (Normal, Uniform, Exponential) - Linear combinations of random variables - Hypothesis tests and confidence intervals - Non-parametric tests (Single sample, paired-sample and Wilcoxon rank-sum tests) Mechanics: - Work, energy and power - Impulse and momentum - Motion in a horizontal circle - Dimensional analysis - Centre of mass - Motion under a variable force - Motion in a vertical circle - Hooke's law - Linear motion under a variable force

	- Oblique impact
Y13FM Spring Term	Pure: - Series and induction (standard series, method of differences) - Lines and planes in space (including vector and cartesian equations of a plane and shortest distance problems) - Polar coordinates - Hyperbolic functions - Further calculus (differentiation of inverse trigonometric and hyperbolic functions, use of inverse trigonometric and hyperbolic functions in integration, using partial fractions in integration, volumes of revolution, mean value of a function) - Maclaurin series - First order differential equations (integrating factors) - Further Complex numbers (De Moivre's theorem, roots of complex numbers and their representation in the Argand diagram, complex numbers and trigonometry) - Second order differential equations (homogeneous, nonhomogeneous and systems of differential equations)
Y13FM Summer Term	- Matrices and simultaneous equations - Simple harmonic motion, damping and damped oscillations - Revision

